Link quality prediction in mesh networks
نویسندگان
چکیده
Wireless self-organizing networks such as mesh networks strive hard to get rid of mobility and radio propagation effects. Links – the basic elements ensuring connectivity in wireless networks – are impacted first from them. But what happens if one could mitigate these effects by forecasting the links’ future states? In this paper, we propose XCoPred (using Cross-Correlation to Predict), a pattern matching based scheme to predict link quality variations. XCoPred does not require the use of any external hardware, it relies simply on Signal to Noise Ratio (SNR) measurements (that can be obtained from any wireless interface) as a quality measure. The nodes monitor and store the links’ SNR values to their neighbors in order to obtain a time series of SNR measurements. When a prediction on the future state of a link is required, the node looks for similar SNR patterns to the current situation in the past (time series) using a cross-correlation function. The matches found are then used as a base for the prediction. Clearly, XCoPred takes advantage of the occurrence and recurrence of patterns observed in SNR measures reflecting the joint effect of human motion and radio propagation. XCoPred focuses only on the scale of links and as such is complementary to mobility prediction schemes, which target prediction at a broader scale. We first prove the occurrence of SNR patterns resulted by the joint effect of human motion and radio propagation. Then we evaluate XCoPred in an indoor mesh network showing, that XCoPred is able to recognize mobility patterns in up to 85% of the cases correctly and the average prediction error on mid-term predictions (i.e., assessing the future link quality more than 1 min ahead) is less than half the error we get using linear prediction. Eventually, we propose and evaluate an enhanced handoff management scheme for 802.11 mesh networks showing the usefulness of XCoPred as a cross-layer input. 2008 Elsevier B.V. All rights reserved.
منابع مشابه
A Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملپیشگویی پیوند در شبکه های اجتماعی با استفاده از ترکیب دسته بندی کننده ها
Abstract Link prediction in social networks is one of the most important activities in analysis of such networks. The importance of link prediction in social networks is due to its dynamic nature. While members and their relationships (links) in such networks are continuously increasing, links may be missed due to various reasons. By predicting such links, the possibility of extension, compl...
متن کاملProviding a Link Prediction Model based on Structural and Homophily Similarity in Social Networks
In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...
متن کاملCost-aware Topology Customization of Mesh-based Networks-on-Chip
Nowadays, the growing demand for supporting multiple applications causes to use multiple IPs onto the chip. In fact, finding truly scalable communication architecture will be a critical concern. To this end, the Networks-on-Chip (NoC) paradigm has emerged as a promising solution to on-chip communication challenges within the silicon-based electronics. Many of today’s NoC architectures are based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Communications
دوره 31 شماره
صفحات -
تاریخ انتشار 2008